Math 255A Lecture 19 Notes

Daniel Raban

November 9, 2018

1 The Toeplitz Index Theorem

1.1 Hardy space

Let $H=\{u\in L^2((0,2\pi)): \hat{u}(n)=0\ \forall n<0\}\subseteq L^2((0,2\pi)),$ where the Fourier coefficients are $\hat{u}(n)=(1/2\pi)\int_0^{2\pi}e(\theta)e^{-in\theta}\,d\theta.$ If $u\in H$, then $u(\theta)\sim\sum_{n=0}^\infty\hat{u}(n)e^{in\theta}$ can be viewed as the boundary values of the holomorphic function $\sum_{n=0}^\infty\hat{u}(n)z^n$ with |z|<1. The space H is called the **Hardy space**.

Let $\Pi: L^2((0,2\pi)) \to H$ be the orthogonal projection sending $u \sim \sum_{n=0}^{\infty} \hat{u}(n)e^{in\theta} \mapsto \sum_{n=0}^{\infty} \hat{u}(n)e^{in\theta}$. Given $f \in L^{\infty}((0,2\pi))$, associated to f is the **Toeplitz operator** $\text{Top}(f): H \to H$ sending $u \mapsto \Pi(fu)$. We have $\|\operatorname{Top}(f)\|_{\mathcal{L}(H,H)} \leq \|f\|_{L^{\infty}}$.

1.2 The Toeplitz index theorem

Theorem 1.1 (Toeplitz index theorem). Let f be continuous 2π -periodic, and assume that f has no zeros. Then Top(f) is Fredholm, and ind(Top(f)) = -winding number(f).

To define the winding number, write $f(\theta) = r(\theta)e^{i\varphi(\theta)}$ with r > 0 and $0 \le \theta \le 2\pi$. The winding number of f is $(\varphi(2\pi) - \varphi(0))/2\pi$. If $f \in C^1$, then the winding number of f is

$$\frac{1}{2\pi i} \int_0^{2\pi} \frac{f'(\theta)}{f(\theta)} d\theta.$$

Proof. To establish the Fredholm property, we try to invert Top(f) modulo a compact error. Here is a claim: Let f, g be continuous 2π -periodic. Then Top(g) = Top(fg) + compact operator.

Write $\text{Top}(f) = \Pi M_f$ and ΠM_g , where M_f, M_g are multiplication operators by f and g. Then $\text{Top}(f) \text{Top}(g) = \Pi M_f \Pi M_g = \Pi(\Pi M_f + [M_f \Pi]) M_g$, where $[M_f, \Pi] = M_f \Pi - \Pi M_f$ is the commutator. So we get

$$\Pi(\Pi M_f + [M_f\Pi])M_q = \Pi M_f M_q + \Pi[M_f, \Pi]M_q = \text{Top}(fg) + \Pi[M_f, \Pi]M_q.$$

It suffices to show that $[M_f,\Pi]:L^2\to L^2$ is compact. We split into cases.

If $f(\theta) = e^{in\theta}$ with $n \in \mathbb{Z}$, $n \neq 0$, then if n > 0,

$$[M_f, \Pi]e^{ik\theta} = (M_f\Pi - \Pi M_f)e^{ik\theta} = \begin{cases} 0 & k \ge 0\\ -\Pi(e^{i(k+n)\theta}) & k < 0. \end{cases}$$

Now observe that $-\Pi(e^{i(k+n)\theta}) = 0$ if k < -n, so the operator is of finite rank and is

therefore compact. The computation is similar for n < 0.

If f is a trigonometric polynomial $f(\theta) = \sum_{-N}^{N} a_n e^{in\theta}$, then $[M_f, \Pi]$ is also of inite rank and is hence compact. If f is an arbitrary continuous, 2π -periodic function, let f_n be a sequence of trigonometric polynomials such that $f_n \to f$ uniformly. Then

$$||[M_{f_n}, \Pi] - [M_f, \Pi]]|| = ||[M_{f_n} - M_f, \Pi]||$$

$$\leq ||M_{f_n - f}\Pi|| + ||\Pi M_{f_n - f}||$$

$$\leq 2||f_n - f|| \to 0.$$

Thus, $[M_f, \Pi]$ is compact.

So the claim holds. Now if $f \neq 0$, write Top(f) Top(1/f) = I + compact, and same for Top(1/f) Top(f). So we get that Top(f) is Fredholm. Notice also that if f, g are continuous and nonvanishing, then $\operatorname{ind}(\operatorname{Top}(fg)) = \operatorname{ind}(\operatorname{Top}(f) + \operatorname{Top}(g) + \operatorname{compact}) =$ $\operatorname{ind}(\operatorname{Top}(f)) + \operatorname{ind}(\operatorname{Top}(g)).$

Now write $f(\theta) = r(\theta)e^{i\varphi(\theta)}$. Then we get $\operatorname{ind}(\operatorname{Top}(f)) = \operatorname{Top}(r) + \operatorname{Top}(e^{i\varphi})$. Take $t_t(\theta) = (1-t)r(\theta) = (1-t)r(\theta) + t > 0$ with $0 \le t \le 1$. To compute ind(Top($e^{i\varphi}$)), write N for the winding number of f, and let $g_t(\theta) = e^{i(1-t)\varphi(\theta)+iNt\theta}$. Then g_t is periodic in θ and continuous in t. So $\operatorname{ind}(\operatorname{Top}(e^{i\varphi})) = \operatorname{ind}(\operatorname{Top}(e^{iN\theta})) = -N$.